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Abstract. In this paper exact analytical values of surface singularity distributions for two-dimensional potential flows 
are presented. A general formulation which provides an alternative to the Milne-Thomson theorem is presented for 
the circle, then distributions are obtained for flow about an ellipse. These solutions provide useful bench-mark test 
cases for examining the convergence properties in the development of some panel-method computer codes. 

1. Introduction 

The surface singularity distribution method or panel method, e.g. Hess and Smith [1], has 
long been a powerful and widely used approach for computing two-dimensional, incompress- 
ible potential flows about arbitrarily shaped bodies. The method can usefully be applied to 
flows about bluff bodies if separated flow regions are modelled. In early work, e.g. Gerrard 
[2], and Sarpkaya [3] regions of vorticity separated from the boundary layer of a circular 
cylinder were modelled by free potential line vortices. Then the Milne-Thomson circle 
theorem was used to obtain the corresponding image system inside the cylinder. In 
particular, Sarpkaya [3] used this approach to model the unsteady symmetric development of 
the wake behind an impulsively started circular cylinder. Benson et al. [4], adopting the 
same model (but with fixed initial location of the nascent vortices), computed the solution 
both by the image method and by a simple straight line constant source strength panel 
method with 128 panels. At each timestep, two nascent vortices were initially positioned 
about a panel length from the surface of the cylinder. After 30 timesteps the computed 
positions of the 60 external vortices calculated by both methods were graphically virtually 
indistinguishable. 

Recently, computer algorithms have been improved by modelling the viscous diffusion 
process as well as the convection process, e.g. Chorin [5], Benson [6] and Benson et al. [7]. 
Then, as an alternative to the cloud-in-cell method, the convection of vorticity can still be 
computed using a simple potential line vortex method and for a general body profile this can 
be achieved using the panel method. 

The present work was motivated by a desire to obtain analytical singularity distributions 
over the surface of two-dimensional bodies in incompressible flow to serve as bencla-mark 
test cases for examining the improved rates of convergence of panel-method algorithms 
when, for example, higher-order effects such as body curvature are included. The panel 
method usually involves two main computational stages. Firstly, a linear system of equations 
is solved to obtain the discretised singularity distribution by applying the boundary condition 
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at a number, N, of node points on the surface of the body. Then, secondly, the velocity field 
is calculated. While there are numerous analytical solutions for velocity distributions which 
allow testing of the final velocity output of panel-method algorithms, there appear to be few 
analytical solutions for the singularity distributions themselves which are calculated in the 
first stage of a panel-method algorithm. It is clearly advantageous to be able to analyse the 
accuracy of each of the main stages of a panel algorithm independently and so to direct 
improvements to the critical part of the computer code and also to identify any error 
cancellation occurring between the several parts of the code. This work provides analytical 
solutions for source/sink, vortex and dipole distributions for various flows about circles and 
ellipses. 

By making use of Green's theorem, it has long been known, see Temple [8], that any 
irrotational field of flow in a bounded, simply connected region is the flow field of a 
distribution of singularities over the boundary (Green's 'equivalent stratum'). In such 
integral formulations, the integrand involves the unknown potential for the flow as a whole 
and so, as pointed out by Jeffreys and Jeffreys [9], 'direct application of these theorems to 
find the internal or external field is seldom possible', except in the cases of a sphere, circle or 
plane. The present work concerns two-dimensional flow only and so complex variables will 
be used for convenience. The approach adopted is similar to that used when proving the 
Milne-Thomson circle theorem [10]. In particular, it is assumed that f(z) is the known 
complex potential for an unbounded flow in the absence of the body and that f(z) is regular 
inside and on the region defined by the body surface. For example, a uniform stream and 
external vortices could contribute to f(z). Then a singularity distribution on the body which 
ensures that the body surface is a streamline is sought in terms of f(z). In general, the 
required distribution can be either a source/sink, a vortex or a dipole distribution or a 
combination of these. 

The separated flow past a circular cylinder is still of widespread practical interest in itself. 
If the panel-method approach is adopted for the solution of the convective process in this 
flow, then the present work gives exact solutions for the singularity distribution and so it is 
unnecessary to solve for approximate values of the singularity distribution at discrete points. 
Thus, algorithms for the convective process could be made more accurate and economical by 
incorporating some of the results described below. 

2. Mathematical formulation 

A stationary two-dimensional body, B, is immersed in an incompressible inviscid fluid (see 
Fig. 1). Exploiting linearity, the velocity at a general point can be written in the form Q + u 
where Q is the velocity in the absence of the body and u is the disturbance velocity (not 
necessarily small) due to the presence of the body. The potential flow problem is then to find 
a function ~o, such that u = grad ~0, which satisfies the following conditions: 

(i) V2tp = 0 exterior to the body, 
(ii) grad ~0-~ 0 at infinity, 

(iii) n .  grad ~o = a~o/an = - Q - n  on the surface S of the body, where n is the outwardly 
directed unit normal. 

Let s be the arc length measured along the surface of the body and consider a source/sink 
distribution on the surface of local intensity m(s) per unit length. Also let z and z(s) be 
complex numbers representing a general point P, exterior to B, and a general point on the 
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Fig. 1. Body B, placed in an otherwise u n b o u n d e d  potential  flow. 

surface, respectively. Then the potential 

1 
m(s) log[z - z(s)[ ds (2.1) 

q~ = 2"~ B 

satisfies conditions (i) and (ii) exactly. Let  z--> z(sl) so that P lies on the surface at s = s I. 
Then condition (iii) requires that 

B m(s) -~n [l~ - z(s)l] ds = - ( Q .n ) ,  . (2.2) 

When s ~ s I the integrand in (2.2) becomes singular and so the left-hand side of (2.2) can be 
rewritten as the sum of an integral of Cauchy principal value type and the term re(s1)/2, see 
Jaswon and Symm [11], 

m(sl)  1 f re(s) e T + ~ _B 7nn [loglz(sl) --z(s)ll ds = - ( Q - n ) , ,  (2.3) 

This is a linear Fredholm integral equation of the second kind. Here,  (2~')-10[loglz(sx)-  
z(s)[] ~On is the component of velocity normal to the body surface induced at s = s~ by a unit 
source at s, which in the case of a circular cylinder of radius a, equals (4~'a) -~. Then the 
integrand in (2.3) is m times a constant. For a dosed body the integral of m is zero. Hence 
the Cauchy principal value in (2.3) is zero and so 

r e ( s 1 )  = - -  2(Q" n ) , .  (2.4) 

Now let f (z)  be the complex potential of the flow in the absence of the circle. If the circle 
of radius a is centred at the origin and s = aO, where 0 is the azimuthal angle measured in the 
anti-clockwise direction from the positive real axis, then 

(Q" n)s = Re[ei~ a el~ (2.5) 

where a dash denotes differentiation with respect to z. Hence, from (2.4) and (2.5), 
source/sink distributions for various external flows can be obtained as presented in Table 1. 
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T a b l e  1. Singularity distributions for various flows past a circular cylinder 

External  flow Source/s ink  distribution Vortex distribution 

Uni fo rm s t ream,  U 
along the x-axis - 2U  cos 0 - 2 U  sin 0 

Point  source of  s t rength M ( d  cos  0 - a)  M d  sin 0 
M at (d, O) l r (a  2 + d 2 - 2 a d  cos 0) "tr(a 2 + d 2 - 2 a d  cos 0) 

Point vortex of s t rength 
F at (d, 0). (Clockwise) 

- Fd sin 0 
Ir (a  z + d z - 2 a d  cos 0) 

F ( d c o s  O - a )  

~(a  2 + d 2 - 2 a d  cos 0) 

Double t  of  s t rength M 
at (d, 0) aligned along 
the x-axis 

M { ( a  z + d 2) cos 0 - 2 a d }  

~ ( a  2 + d 2 - 2 a d  cos 0) 2 

M ( d  2 - a 2) sin 0 

~r(a 2 + d 2 - 2 a d  cos 0) 2 

Circulation, K K 
about  the cylinder - -  2~ra 

N.B. If the location of the  external  singularity is d exp( ia ) ,  then  in the above expressions,  replace 0 by 0 - a .  

Also from (2.4) and (2.5), 

rn(0) = - { ~  f ' ( ~ )  + ~'f'(a~')} 

where K=exp(i0), bars denote complex conjugates and f(z)=f(~.). Hence, when the 
cylinder is present, the complex potential is 

w ( z ) : f ( z ) -  ~ i  ~c ( ~  f ' ( ~ ) +  f ' ( a , ) }  log(z - a , )  d ,  (2.6) 

where C is the unit-radius circle, I 1--1. Differentiating (2.6) gives 

dw , 1 [ -~ f '  + f'(a~) 
dff (2.7) -d-~z = f ( z ) + 2 - ~  c z 

a 

= f ' (z)  + (Sum of residues of poles inside C).  

Now let S 1 be the sum of the residues of poles of 

{~z JT'(~) + f ' ( a ~ ' ) ) / ( ~  " - z )  (2.8) 

which lie inside C when I zl > a. Then, in Appendix 1, it is shown that 

S 1 = - (a/z)Zfl'(aZ/z), (2.9) 

so giving dwldz in accordance with Milne-Thomson's circle theorem. If, however, Izl < a, 
the velocity inside the circular cylinder Izl = a given by (2.7) will be different from that 
arising from the circle theorem. When Izl < a, the function (2.8) has an additional pole of 
order one inside C at ~ = z/a. The residue of this pole is given by 
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(2.10) 

Hence, when I zl < a, 

d w  
dz = f ' ( z )  + S I + S 2 = 2f ' ( z ) .  (2.11) 

A simple example for a particular choice of f(z) is given in Appendix 2. 
It is clear that circulation about the cylinder cannot be obtained by means of a source/sink 

singularity distribution. An alternative approach, however, is to account for the presence of 
the cylinder by a vortex distribution, F(0) say, on the surface. Here F(0) is positive for 
circulation in the anti-clockwise sense. Then, corresponding to equations (2.4) and (2.5) we 
have 

F(0) = 2(Q. t)0 = - 2 Im[ei~ e i~  , (2.12) 

where t is a unit vector tangential to the circle in the direction of 0 increasing. Hence vortex 
distributions for various external flows can be obtained as presented in Table 1. Note that 
the distribution corresponding to a circulation about the cylinder is included. If ~ and C are 
as defined earlier, then 

r(o) = i{ ~'f'(a~ r) - 

and 

(2.13) 

1 
dw 1 ~ -~ f '  - f ' ( a ~ )  

d~'. (2.14) dz = f ' ( z )  + "~i  c z 
a 

Now f ' ( a~)  is regular inside C and so is 1 / ( ~ -  z/a) when Izl > a. Hence, when Izl > a ,  the 
integral in (2.14) has the same value as the integral in (2.7), namely S 1 as given by equation 
(2.9). When Izl < a,  however, the residue, S 2 of the additional pole inside C at ~ = z/a is 
given by 

S 2 = (a/z)2f'(a2/z) - f ' ( z ) .  

Hence, when Izl < a, dw/dz  = 0 and the fluid is at rest inside the cylinder. 
Equivalent dipole distributions can be obtained by integrating equation (2.6) by parts. 

Then 

a ~ f(a/r 
w(z)  = f ( z )  + ~ c z - a~ d~" 

1 f0 2= - 2 I m [ f ( a  ei~ ei(O+~ ) a dO 
=f(z )  + ~ z~ae,-- ~ . 

The integral now represents a doublet distribution of strength M(O) per unit length where 

M(O) = 2 Im[f(a eie)], 
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and the axis of the doublets is tangential to the cylinder. In general, a source-strength 
distribution m is simply related to the equivalent doublet distribution M by the equation 

dM 
m = ds ' (2.15) 

which for a circular cylinder reduces to 

1 d M  m(0) - - -  

a d0 " 

Similarly, starting with a vortex distribution, an equivalent doublet distribution, G(O) can 
be obtained where 

G(O) = - 2 R e [ R a  e i~  , 

and the axis of the doublets is normal to the surface of the cylinder. 
To avoid the singularity in (2.2), there may be computational advantages in locating 

singularity distributions inside the body, B instead of on the surface of B, especially in the 
case of bluff bodies. As a simple analytical example, if B is a circle of radius a in a uniform 
stream U, an equivalent source/sink distribution on the concentric circle of radius r ( < a) is 
given by 

m(O) = - 2U(a/r) 2 cos O. 

For an elliptical cylinder with Cartesian coordinates (a cos ~o, b sin r  say, there is no easy 
way to get m from equation (2.3). Although the integral of m about the ellipse is zero, the 
integrand in (2.3) is no longer m times a constant and so the Cauchy principal value is not 
zero. Moreover, conformal transformation of the singularity distribution on a circle to an 
ellipse will yield a correct result but not in the form of a simple singularity distribution over 
the surface of the ellipse. However, for a uniform stream along the x-axis, the case of the 
circular cylinder suggests seeking a source/sink distribution of the form 

m(r  = UA cos ~o/(a 2 sin 2 q~ + b 2 cos z ~0)  1 / 2  . 

Then it is found that (2.3) is satisfied if 

A = - b(a + b)/a.  

Then the flow outside the ellipse is the same as obtained by conformal transformation, 
whereas the flow inside the ellipse is a uniform stream, U(a + b) /a  along the x-axis. This 
follows from the equation corresponding to (2.7): 

dw Ub ~ (~z + 1)d~  
d---z = U + ~ c ~'(~:z~-)(~" : z2) ' (2.16) 

where C is the unit radius circle, 1~[ = 1 and where z 1 and z 2 are the roots of 

~2_( 2a_~b)~ +a-b 
a +---b = 0 .  
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If z lies outside the ellipse then the above contour  integral has two poles inside C, at ~ = 0 
and K = z 2 whereas if z lies inside the ellipse, there is an additional pole inside C at K = z 1. 

The corresponding distribution of  dipoles with axes tangential to the ellipse is obtained 
from equation (2.15), (or alternatively from (2.16)) as follows: 

M(~p) = - U;~ sin q~. 

It may be noted that these results apply to an elliptical cylinder whose major  axis is normal 
to the free-stream direction if b > a. 

If a uniform stream is at a general incidence a to the ellipse, the following vortex 
distribution is obtained,  

F(tp) = - U(a + b) sin(~p - a ) / ( a  2 sin 2 q) + b 2 cos 2 (p)l/2. (2.17) 

If b ~ 0, the vortex distributions over the upper  and lower surfaces of the ellipse coalesce. 
Then,  in the limit, (2.17) reduces to 

F = 2Ux sin a / ( a  2 - x2) 1/2 , 

the usual result for a flat plate at incidence. 
The vortex distribution corresponding to a circulation K about the ellipse is given by 

r(tp) = K/{2,n.(a 2 sin 2 tp + b 2 cos 2 ~0) 1/2} . (2.18) 

Distributions (2.17) and (2.18) both give zero velocity inside the ellipse. Corresponding 
doublet  distributions can be obtained. 

3. Conclusions 

The effect on a general unbounded two-dimensional potential  incompressible flow, with 
undisturbed vector  velocity Q, with no singularities within the region ]z[ ~< a, has been 
considered when a circular cylinder, [z[ = a, is introduced into the flowiield. Instead of 
applying the Milne-Thomson circle theorem to obtain an image system inside the circle, it 
has been shown that an equivalent analytical singularity distribution on the surface of the 
cylinder can be obtained. This can be either a source/sink distribution (if there is no 
circulation about the cylinder), given by equation (2.4) or a vortex-sheet distribution given 
by (2.12). Hence 

Qs = �89 [ r (0 ) t  - m(o)n]  (3.1) 

where t and n are unit vectors tangential and normal to the cylinder as defined earlier. I f f ( z )  
is the complex potential  of the flow before the introduction of the cylinder, then (3.1) can be 
expressed in the following complex form, 

re(o) + i t ( 0 )  = - 2 ei~ eie) .  (3.2) 

The singularity distribution on the cylinder can also be a combination of a source/sink 
distribution and a vortex distribution of the general form 

km(O) + (1 - k)iF(0) 

where k is a real constant. Then  the corresponding general form of the complex potential is 
given by 
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dw 1 s ~-7 f '  + ( 2 k -  1)f ' (a~) 
- -  = ~o d ~  ( 3 . 3 )  dz  f ' ( z )  + ~ c z 

5 - - - -  a 

where C is the unit circle I~l = 1. For a distribution entirely of sources and sinks, k = 1 
whereas for a distribution entirely of vortices, k = 0. Equivalently, these monopole distribu- 
tions can be expressed as dipole distributions. 

For models of separated flows past circular cylinders of the type studied by Sarpkaya [3] 
and Benson et al. [4], the present results give the corresponding singularity distribution on 
the surface if a panel approach is adopted. For example, if there are n vortices in the wake of 
the cylinder and the typical ith vortex has strength F i and is located at d i exp(iai) then the 
corresponding source/sink distribution is 

re(O) = - 2U cos 0 - 
Fidi sin(0 o~i) I 

i=1 zr(a 2 "-~- . . . .  (3.4) + d i - 2ad i cos(0 - oti) 

If a vortex is close to the circle then the distribution on the circle behaves like 1/e where e is 
the distance between the vortex and the surface. Then a large number of panels may be 
required to compute a soldtion comparable to that of the Milne-Thomson approach. The 
numerical example of Benson et al. [4] suggests that close agreement between the two 
methods is obtained if vortices are at or beyond one panel length from the body surface. The 
error introduced near the surface by the discretisation of (3.4) depends on the order of the 
panel method adopted as discussed below. 

Bellamy-Knights et al. [12] compare the analytical singularity distributions presented here 
with the distributions predicted by panel methods of different order and for N = 16, 32, 64 
and 128 where N is the number of panels. It is found numerically that for the 'zeroth'-order 
panel method (i.e. straight-line panels of constant strength), the singularity strength and 
external velocity field converge only as 1 /N .  If, however, panel curvature is taken into 
account (maintaining constant panel strength) then the singularity strength and external 
velocity field converge as 1 / N  2 These results led Bellamy-Knights et al. [12] to re-examine 
the work of Hess [13]. Analysis of the velocity induced at the control point of a panel by that 
panel itself verified that panel curvature should be taken into account to allow the computed 
strength distribution and external velocity field to converge as 1/N 2. To compute the velocity 
distribution on the surface of the body to order 1 / N  z, it is additionally required to take panel 
strength variation into account. This analysis applies to bodies of arbitrary shape and it 
suggests that the panel method of Shaw [14], which takes account of panel curvature and 
strength variation, everywhere computes velocities which converge as 1 / N  2. 

Appendix 1 

The following integral, / ,  will now be evaluated for Izl > a: 

1 1 z 
I =  ~ i  ~c  [~-2 f i ' ( ~ ) +  f ' ( a ~ ) ] / [  ~ ' - a ]  d~ 

where C is the unit circle [~l = 1 and f ( z )  is regular inside and on the circle [z[ = a. 
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First note that f ' ( a~ )  and (~ - z /a)  are both regular inside C and so I reduces to 

1 I = ~ ~ c  f ' ( a /~ )  d~ 

On applying the substitution ,1 = 1/~, I is t ransformed into a contour  integral in the ~-plane, 

i .e. ,  

- 1 ~ a~lf'(aTI) dTl 
l =  ~--~i o 

where D is the unit circle Inl = 1. Nowf ' (a~/ )  is regular inside the circle Inl = 1. Since Izl > a, 
there is one simple pole inside hi--1 at ~ = a/z.  The residue of the pole at ~/= a/z  is 
(a/z)2f'(a2/z). Hence 

I = - (a/z)2f '(a2/z) .  

Appendix 2 

As an illustrative example,  consider a point vortex of strength F (in the clockwise sense) at 
the point A (d, 0) where d > a. Then,  with reference to Fig. 2, the magnitude, IQI of the 
velocity induced at the general point B of the circle of  radius a is given by F/(2erAB).  
Hence ,  using equation (2.4), the corresponding source distribution is 

F sin/3 Fd sin 0 
re(O) = - 2Q- n - ~rAB = ~r(a 2 + d 2 - 2ad cos 0) 

The complex potential,  W for this source distribution on the circle Izl = a is given by 

f:= log(z - a ei~ dO 
re(O) 

w =  2---g- 

- # .C 

c8~ ~ \ \  

A{d,O) 

Fig. 2. Geometrical definitions for a vortex outside a circle. 
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Then,  putting ~" = exp(i0) ,  it follows that 

dW F ~c ( ~ 2 _ l )  d~ 
dz = 4 - - ~ a  

where C is the unit radius circle 1~1= 1. 
The integrand has four simple poles, at ~ = 0, ~ = a/d,  ~ = z /a  and ~ = d/a. The first two 

poles lie inside C, the third pole lies either inside or outside C and the fourth pole lies 
outside C. Let  the residues of the first three poles be R1, R 2 and R 3 respectively. Then 

a a a a a 
R I =  - R 2 =  a 2 , R 3 = - -  + - -  z ' z - d  a 2 z 

z - - - -  z - - -  
d d 

If [z[ > a, then only the first two poles lie inside C. Hence 

dz = 4- '~a"  27ri ' (R1 + R2) = ~ 
Z - -  

This corresponds to a clockwise rotating vortex at z = 0 and an anti-clockwise vortex at 
z = a2/d. Hence when [z[ > a, the source distribution gives the same flow as obtained from 
the image vortex system given by the Milne-Thomson circle theorem�9 

If I zl < a, then the first three poles lie inside C. Hence 

dW F 
dz 4r 

iF 1 
�9 21ri. (R 1 + R 2 + R3) = 27r z - d " 

The complex po ten t i a lw due to the vortex at A and the source/sink distribution is given by 

iF 
w = l o g ( z  - a )  + w dWdz = 2 

iF 1 

2 "ff z -- d " 

Thus equation (2.11) is confirmed. 
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